Logan Shaffer MA345: Honors Project April 24, 2024

1 Statement of Purpose:

The purpose of this project is to model the IVP differential equation for the mass spring
system: z” + 3z’ 4+ 2x = 0, z(0) = x¢, 2/(0) = x;. This project sought to set-up a general
homogeneous solution with the initial conditions, then plugging in x(0) = z¢, 2'(0) = 1 and
graphing with three different xy with given initial velocity. Solving the non-homogeneous
portion letting f(t) = 4cost , finding a general solution y = y, + y, and letting z(0) = o,
2'(0) = 1 and graphing with three different . The solution y = v+, is also to be graphed
after letting x(0) = 2, 2/(0) = z; using four different z; with the given initial displacement
conditions. Finally, the homogeneous and non-homogeneous portions are to be solved using
Laplace Transformations for letting x(0) = 2, 2/(0) = 1.

2 Homogeneous Solution:

To find a homogeneous solution, I first found the auxiliary equation of 2" + 32’ + 22 = 0 to
be "+ 3r'+2r = 0. Then solving for r, I found there were two real solutions of r = —2, —1.
After, I plugged the r values into the homogeneous equation of x;, = Cie™ + Coe™ to get
xp, = Cre ® + Cye . T applied the initial conditions of z(0) = =z, '(0) = z; to the
homogeneous solution and solved for C; and Cj.

ZE;L = —2016_2t - 026_t
z(0) = 29 = C1e° + Cae’

1’0201+02 £E1:201—02
Ci=z9—CY Cy=-2C1 —
Cy =x9— (2C) — 1) Cy=—=2(—x9 —x1) — 11
Cl :—(ZL’0—|—JI1> CQ :2$0+JI1

Plugging back into the homogeneous equation, the new equation is
zp = —(x0 + x1)e” 2 + (219 + 71) e
Which after plugging in 2(0) = zo, 2’(0) = 1, the equation becomes
zp = —(zo+ e 2 + (220 + 1)e?

I graphed the equation with three different z(initial conditions in Microsoft Visual Code
Studio using Python and Jupyter Notebook. The graph and code for the graph can is as
follows:

Graph of x»
2.5

2.04 —_— X0 =

1.5

1.0 1

Xauis

0.5 1

oo

Time(t)
Figure 1: Homogeneous graph with initial conditions

import matplotlib.pyplot as plt
import numpy as np

np.arange(0, 10.0, 0.01)

yl (-(x1 + 1) * np.exp(-2*t))+((2*x1 + 1) * np.exp(-t))
y2 (-(x2 + 1) * np.exp(-2*t))+((2*x2 + 1) * np.exp(-t))
y3 (-(x3 + 1) * np.exp(-2*t))+((2*x3 + 1) * np.exp(-t))

fig, ax = plt.subplots()
ax.plot(t, y1, c="red",
ax.plot(t, y2, c="blue",
ax.plot(t, y3, c="green", lw=1.5)

ax.set(xlabel='$Time (t)$', ylabel='$X_ {axis}$',
title="'Graph of x_h")

ax.grid()

plt.x1im(@,5)

plt.ylim(-0.5,2.5)

plt.legend([C1,C2,C3])

plt.show()

Figure 2: Code for plotting homogeneous equation with initial conditions

3 Non-homogeneous Solution:

To find a non-homogeneous solution, I found the particular solution of f(t) = 4cost and the
homogeneous solution of x, = Cie™ — Cye™* . To do this, I setup the general particular
solution for f(t), which is x, = t*(Acost + Bsint) where s=0. So this simplifies to:

x, = Acost + Bsint.

Then I took the first and second derivative with respect to t to get:

x; = — Acost + Bsint.
x;’ = —Acost — Bsint.

Then plugging the derivatives of the particular into " + 32" + 2x = 4cost resulted in:
(—Acost — Bsint) 4+ 3(—Asint — Bcost) + 2(Acost + Bsint) = 4cost.

Which simplifies to A + 3B(cost) + B — 3A(sint) = 4cost + Osint. Setting the coefficient of
4cost and Osint equal to A + 3B and B — 3A respectively, results with B =6/5, A = 2/5.
Which plugging into z, results in: z, = 2/5cost + 6/5sint. Where z(t) = z, + x, is equal
to:

z(t) = Cre 2 — Cye™" + 2/5cost + 6/5sint
I applied the initial conditions of z(0) = ¢, 2/(0) = x; to x(t) and solved for C; and Cy

zg = C1e’ — Cye® + 2/5c0s(0) + 6/5sin(0)
I0201—02+2/5
and
zy = —2C1e % — Cye™" + 2/5sint + 6/5cost
x1 = —2C1e" — Cae® + 2/5sin(0) 4 6/5c0s(0)
T = —201 —02+6/5

01:$0+Cg—2/5 171:—2(1'0—02—2/5)—02+6/5
Cy=x9— (21 + 219 —2)—2/5 r1 = —2x0+2C5+4/5—Cy+6/5
01:—$1—$0+8/5 x1:—2x0+02+2
01:—($1+$CQ>+8/5 02:x1+2:c0—2

Plugging back in, the new equation is
z(t) = [(@1 4+ 20) + Ele™ + [v1 + 239 — 2]~ + Zcost + Esint
Which after plugging in z(0) = 2y and 2/(0) = 1, the equation becomes
z(t) = [—(1 4 zo) + Ee + [2z0 — 1]e™" + 2cost + Lsint

I graphed three different xy with the given initial velocity using this equation as shown
below:

Graph of x(t) =xn + Xp

Xaxis
o
Ln

1

0.0

—0.5 4

—1.0 1

-1.5

Time(t)

Figure 3: Non-homogeneous graph with initial conditions

import matplotlib.pyplot as plt
import numpy as np

np.arange(0, 10.0, 0.01)

((-(1 + x1)+(8/5)) * np.exp(-2*t)) + ((2*x1 - 1) * np.exp(-t)) + ((2/5) * np.cos(t)) + ((6/5) * np.sin(t))

((-(1 + x2)+(8/5)) * np.exp(-2*t)) + ((2*x2 - 1) * np.exp(-t)) + ((2/5) * np.cos(t)) + ((6/5) * np.sin(t))
((-(1 + x3)+(8/5)) * np.exp(-2*t)) + ((2*x3 - 1) * np.exp(-t)) + ((2/5) * np.cos(t)) + ((6/5) * np.sin(t))

fig, ax = plt.subplots()
ax.plot(t, yl, c="red", lw=1.
ax.plot(t, y2, c="blue",
ax.plot(t, y3, c="green",

ax.set(xlabel='$Time (t)$', ylabel='$X_ {axis}$',
title="'Graph of $x(t)=x_h+x_p$")

ax.grid()

plt.x1im(0,10)

plt.ylim(-1.5,2.5)

plt.legend([C1,C2,C3])

plt.show()

Figure 4: Code for plotting Non-homogeneous equation with initial conditions

4 Results of Homogeneous and Non-homogeneous:

When the inital condition from Figure 1 and 3 are changed, the initial height of the
oscillation is either increased or decreased from its initial position. Depending on how far
the initial condition is changed, the amplitude of the oscillation could be extremely high,
low, or negative. In the end, all of the lines eventually converge to form a single line or
oscillation.

The homogeneous IVP model is an over damped oscillation since the solution has two real
roots with no oscillation or imaginary roots. The steady state solution is
x, = 2/5cost + 6/5sint and the transient solution is z, = Cre™* — Cye™!

5 Graphing z = z), + x,:

Now I took the homogeneous plus non-homogeneous solution from section 2 after plugging
in 2(0) = 2 and 2/(0) = z1, where the equation becomes

= [—(z1+2)+ Ele™ + [x1 + 2]le™" + Zcost + Lsint

I graphed it with four different x; with the given initial displacement condition.

Graph of x(t) = xn + Xp

2 — x1=10
—_x1 =1
1+ — x1=2

Xaxls

|

= (o]

1 1
/ v

Time(t)

Figure 5: Homogeneous plus Non-homogeneous graph with initial conditions

matplotlib.pyplot as plt
numpy as np

.arange(@, 10.0, ©.01)

x1)+(8/5))
(x2 (8/5

np.exp(-2*t)) (.exp(-t))
np.exp(-2*t)) (.exp(-t))

*
*

(x3 (8/5)) * np.exp(-2*t)) (.exp(-t))
*

(x4)+(8/5)) np.exp(-2*t)) (.exp(-t))

fig, ax = plt.subplots()
.plot(t, y1, c="red", lw=1.5)
.plot(t, y2, c="blue", lw=1.5)
.plot(t, y3, c="gr lw=1.5)
.plot(t, y4, c="bl 1w=1.5)

.set(xlabel="$Ti
title="Graph o
ax.grid()
plt.xlim(e,10)
plt.ylim(-3.5,2.5)
plt.legend([C1,C2,C3,C4],loc="upper right')

plt.show()

Figure 6: Code for Homogeneous plus Non-homogeneous graph with initial conditions

In Figure 5, the system shows the variation of initial conditions with starting amplitudes,
but as time continues they converge to the steady state and transient solution. So no
matter how large a number is input for the initial displacement, they will fall into a
predictable oscillation modeled by x(t).

6 Laplace Transforms:

I solved the homogeneous and non-homogeneous systems with Laplace transforms for
z(0) = 2 and 2/(0) = 1. First, I used the homogeneous with initial conditions to get

" 432" 4+ 22 = 0;2(0) = 2,2/(0) =1

Then I applied the Laplace transform with the differentiation property to each term of the
homogeneous solution:

$2X —25—1+3sX —6+2X =0
Which simplifies to
X[s*+3s+2]=T+2s

After dividing, I applied partial fractions to solve for A and B:

_ 7+2s
X = (s+2)(s—1)

T+2s=A(s+1)+ B(s+2)
Plugging in s=0,1, I solved for A=-3 and B=-4
X == _ 4

Then taking the inverse Laplace of both sides gets the final homogeneous solution with
conditions of:

L71X) = —3e 2 —4e?
Which matches the homogeneous solution of z; with conditions of z(0) = 2,2/(0) =1
z, = —3e 2 — 4e7?

I then applied the Laplace transform again to the non-homogeneous portion solving with
the initial conditions:

" + 32’ 4 2x = 4cost; x(0) = 2,2'(0) = 1

Then I applied the Laplace transform with the differentiation property to each term of the
homogeneous solution
$2X — 25— 1+3sX —6+2X =

s2+1
Which simplifies to

4s
X[s?+35+2] =T+ 25+ 255

After dividing, I applied partial fractions to solve for A,B,C,D:

X — 253 +752465+7
T (s241)(s2+3s5+2)

_ _r_2 6 3 7
L71UX) = [3(3211) + 5(s2+1 a1 s(s+2)]

Which gives the final solution of: = 2cost + Esint + 3e™" — Le™*
Which matches the non-homogeneous solution of z(t) with conditions of z(0) = 2,2/(0) =1

x(t) = Zcost + Ssint 4+ 3¢~ — Le7?

7 Summary:

I was successful in modeling the IVP differential equation of the given mass spring system:
2" + 32" = 2z = 0 letting the non-homogeneous portion equal f(t) = 4cost. 1 fully solved
for all given initial conditions and graphed with several different initial displacements to
show the changing graphs with the conditions. 1 was able to identify the oscillation, steady
state, and transient solutions. Finally, I took the Laplace transform for the homogeneous
and non-homogeneous systems with given initial conditions.

You might see an over damped oscillation in the "real world” where a system or mechanism
slowly returns to its original position without oscillating. A perfect example of a design
that uses an over damped oscillation is the closing of a automatic handicap door. A door
that slowly returns to its original position can be modeled with an over damped oscillation,
as you do not want the door to oscillate through its rest position, but if displaced either
forward or back, to eventually return to its zero position.

Having done this project, I have gained more experience in Python, Visual Code Studio
and using Jupyter Notebook. All of these skills, I have acquired from my journey with this
project, and I have learned many new skills and techniques that I will be able to showcase
and apply in my future studies.

I would recommend that the project could be altered to further either the student’s solving
or application skills. The project could feature each ”"look” of oscillation from over
damped, critically, under, and no damping to be graphed. Although, this would introduce
more work for the student, other sections such as Laplace transforms, or less conditions,
could be altered in length or removed to distribute the workload more evenly.

